If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+42x-98=0
a = 6; b = 42; c = -98;
Δ = b2-4ac
Δ = 422-4·6·(-98)
Δ = 4116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4116}=\sqrt{196*21}=\sqrt{196}*\sqrt{21}=14\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-14\sqrt{21}}{2*6}=\frac{-42-14\sqrt{21}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+14\sqrt{21}}{2*6}=\frac{-42+14\sqrt{21}}{12} $
| |2x+4|-6=0 | | 4/(w-1)=3 | | 6n-4=18 | | 4/w-1=3 | | 8x-10=9-5x | | -3x+5=27+x | | 4x+10+3x+10=180 | | A×b=24 | | 4.9x^2+30x+45.9=0 | | 1/4z-5/6=-3/4z-2/3 | | 3x.7=7x.3 | | 2x+5(x-3)=x=2 | | 5.6(x-2.5)=-11.2 | | 0=245o | | 4x+10+50=9× | | X=2.6,y=-2.9 | | 5/0.3=x | | 19-6x=A | | 4x-170=x-20 | | (2x-1)/(8-x)=1 | | 2x-1/3(175-x)=115 | | 2x-1/3(175-x)=125 | | 3x-2(150-x)=325 | | 16x+15=6x+3 | | 1-9/x=4/5 | | (160-4x)+6x+5x=300 | | 1.5x=200 | | 3(x+2)=2(2x+3) | | 11x=-15 | | x+0.06x=6 | | 6t=4(t+10) | | 15x2+2x−8=0. |